Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.

نویسندگان

  • Peter R Birkin
  • Douglas G Offin
  • Christopher J B Vian
  • Timothy G Leighton
چکیده

Bubble dynamics in water close to the tip of an ultrasonic horn (∼23 kHz, 3 mm diameter) have been studied using electrochemistry, luminescence, acoustics, light scattering, and high-speed imaging. It is found that, under the conditions employed, a large bubble cluster (∼1.5 mm radius) exists at the tip of the horn. This cluster collapses periodically every three to four cycles of the fundamental frequency of the horn. Following the collapse of the cluster, a short-lived cloud of small bubbles (each tens of microns in diameter) was observed in the solution. Large amplitude pressure emissions are also recorded, which correlate temporally with the cluster collapse. Bursts of surface erosion (measured in real time using an electrochemical technique) and multibubble sonoluminescence emission both also occur at a subharmonic of the fundamental frequency of the horn and are temporally correlated with the bubble cluster collapse and the associated pressure wave emission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple and novel method for acoustic streaming power measurement of ultrasonic horn

Ultrasonic horn with transfer of acoustic wave into an aqueous solution results in unique properties. When, transfer of sound wave into a liquid results in liquid movement in the direction of wave propagation which gradually loses its energy due to the viscous friction. This wave motion induces a flow which is known as acoustic streaming or micro-streaming. In this article, a simple innovative ...

متن کامل

High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed...

متن کامل

Improving the Surface Quality using Combined Ultrasonic Vibration and Magnetic Abrasive Finishing Method

In this paper, a new non-contact ultrasonic abrasive finishing mechanism is designed and fabricated. This mechanism combines the function of ultrasonic vibrations and the magnetic abrasive finishing (MAF) process. A permanent magnet which is mounted on a horn has been used as the processing tool. This polishing tool is vibrated at an ultrasonic frequency with piezo-electric actuators. Ultrasoni...

متن کامل

Cavitation occurrence around ultrasonic dental scalers.

Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips obs...

متن کامل

Opus: University of Bath Online Publication Store Sonochemical Characterisation of Ultrasonic Dental Descalers Revised Manuscript

An ultrasonic dental descaling instrument has been characterised using sonochemical techniques. Mapping the emission from luminol solution revealed the distribution of cavitation produced in water around the tips. Hydroxyl radical production rates arising from water sonolysis were measured using terephthalate dosimetry and found to be in the range of mol min -1 , comparable with those from a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 130 5  شماره 

صفحات  -

تاریخ انتشار 2011